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ABSTRACT  

The ABO blood group system is vital to blood transfusion and organ transplantation. ABO antigens are the most 
important of all blood group antigens in clinical practice, and are not only present in red blood cells and platelets, 
but also in most secretions and epithelial tissues. ABO antigens are known to undergo drastic changes during the 
development, differentiation, and maturation of normal cells. Profound changes have also been documented in 
pathological processes such as tumorigenesis. To elucidate the molecular basis of how ABO genes are controlled 
in cell type specific expressions, such as normal cell differentiation or in cancer cells lacking A/B antigens, it is 
essential to understand the regulatory mechanisms of ABO gene expression. In this review, current knowledge 
concerning the regulatory mechanisms of ABO gene expression was summarized.
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INTRODUCTION

The ABO blood group system was discovered by 
Karl Landsteiner at the beginning of the 20th century 
and is of great importance to blood transfusion and 
organ transplantation. The ABO system comprises of 
two carbohydrate antigens, designated A and B, which 
give rise to four phenotypes, A, B, AB and O. In the 
O phenotype, neither A nor B is produced. ABO an-
tigens are widely distributed and are present not only 
in red cells and platelets but also in body fluids and 
tissue/cell surfaces, including epithelial cells, sensory 
neurons, and the endothelia of blood vessels. The term 
histo-blood group ABO is often used to reflect the 
wide distribution of ABO antigens. They are, how-
ever, absent from connective tissue, muscle, and the 
central nervous system. ABO antigens are present in 
the fetus as early as 5-6 weeks gestation, but are not 
fully expressed until 2-4 years of age. ABO antigens 
are known to undergo drastic changes during the de-

velopment, differentiation, and maturation of nor-
mal cells. When erythroid cells differentiate in vitro, 
ABO is expressed at an undetectable level in the early 
phase, increases subsequently, and then decreases 
later. The ABO gene transcript is barely detectable 
in CD133-CD34+ cells freshly purified from blood, 
whereas ABO transcripts become apparent in ex vivo 
culture[1]. In addition to these physiological processes, 
profound changes have also been documented in 
pathological processes, such as tumorigenesis. Reduc-
tion or complete deletion of A/B antigen expression in 
carcinomas has been reported. To elucidate the mo-
lecular basis of how ABO genes are controlled in cell 
type specific expression, such as in during normal cell 
differentiation, or in cancer cells lacking A/B antigens, 
it is essential to understand the regulatory mechanism 
of ABO gene transcription.

ABO GENE PROFILE
The ABO blood group involves three carbohydrate 
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antigens: A, B and H. H antigen is the precursor of 
both A and B antigens. The functional A and B al-
leles at the ABO genetic locus, encode glycosyltrans-
ferases α1→3GalNAc transferase (A-transferase) and 
α1→3Gal transferase (B-transferase), respectively. A-
transferase transfers a GalNAc residue from UDP-
GalNAc to the precursor H substrate, producing A 
antigens. Similarly, B-transferase catalyzes the trans-
fer of Gal from UDP-Gal to the same H substrate, 
producing B antigens[2]. The genomic structure of 
human ABO genes was reported in 1990 [3-4]. These 
initial molecular genetic studies demonstrated that the 
ABO gene is located on chromosome 9q34.1-q34.2, 
contains 7 exons, and that the coding sequence in 
the 7 coding exons spans over 18 kb of the genomic 
DNA. The exons range in size from 28 to 688 bp, 
with most of the coding sequence lying in exon 7. 
The ABO gene shows considerable polymorphisms 
in exons and introns, plus the upstream region and 
downstream region. Several polymorphisms affect the 
specificity of the gene product(glycosyltransferase) 
and explain the occurrence of blood group A and B. 
The common ABO alleles, ABO*A1.01, ABO*B.01 
and ABO*0.01, differ by only a few single-nucleotide 
polymorphisms [5]. There are four amino acid substitu-
tions between A and B transferases (on positions 176: 
for arginine; 235: glycine; 266: leucine; and 268: gly-
cine, in A transferase and glycine, serine, methionine, 
and alanine in B transferase). O alleles contain a sin-
gle nucleotide deletion (G residue at nucleotide 261) 
which causes frame shifting of codons, which results 
in a protein without enzymatic activity of either A or 
B transferase. Among the ABO gene polymorphisms, 
various lethal mutations result in blood group 0.0 ther 
mutations are presumed to alter activity rather than the 
specificity of the enzyme and result in weaker A or B 
blood group phenotypes [6]. 

THE REGULATORY FUNCTION OF THE 
5'-UPSTREAM REGION OF THE ABO GENE

Gene expression is driven by promoters, enhancers, 
transacting factors, and other cis-regulatory elements. 
Studies of the human ABO genes using cultured cells 
have demonstrated transcriptional regulatory elements. 
Firstly, Kominato et al. determined two transcrip-
tion start sites just upstream from the initiation codon 
by the 5'-RACE technique using human pancreatic 
cDNA as a template[7], starting at the -32 and the -8 
position of the initiation codon. Several GC boxes 
were found just upstream of these transcription initia-
tion sites, however neither TATA nor CAAT boxes 
were found close to this region. The characterization 
of the 5'-upstream sequence of human ABO genes 

demonstrated that the proximal promoter was located 
between -117 and +31 in both erythroid and epithelial 
cell lineages [8], whereas the distal promoter showed 
cell-type specificity, being located between -832 and 
-667 relative to the transcription start site in Exon 1 of 
the ABO gene. The levels of transcripts starting from 
the proximal promoter were much higher compared 
with those from the distal promoter. 

Like many housekeeping genes, the ABO gene 
contains a typical CpG island that extends from 0.7 kb 
upstream to 0.6 kb downstream from the transcrip-
tion start site in exon 1. Expression of ABO genes 
was shown to be repressed upon DNA methylation of 
the CpG island in the promoter region [9]. The utiliza-
tion of multiple promoters and transcription start sites 
is a frequently used mechanism to create diversity 
and flexibility in the regulation of gene expres-
sion. An alternative promoter exon 1a, located 682 
bp upstream of the original exon 1, was identified in 
AC133-CD34+ cultured cells obtained from periph-
eral blood [10-11]. The alternative erythroid transcript 
accounted for 2 percent of transcripts in these cells. 
Exon 1a is utilized as the transcription starting exon 
by cells of both erythroid and epithelial lineages. A 
report by Tan and coworkers[11] identified alterna-
tive first exons in 35 percent of erythroid genes and 
proposed that they are important for gene regulation. 
Both ABO promoter regions contain CpG islands that 
can initiate transcription. Although exon 1a transcripts 
lack exon 1 and thus lack the translation start site at 
position ABO nucleotides 1 to 3, it leads to production 
of a functional glycosyltransferase, probably by uti-
lizing downstream alternative start codons[12].

The Sp1 binding site (-22 to -14) in the ABO 
promoter, is capable of binding to Sp1 or Sp1-like 
protein(s). The introduction of binding-deficient mu-
tations at the site results in a decrease in promoter 
activity in erythroleukaemia cells and gastric cancer 
cells [13]. The expression of the ABO promoter is in-
fluenced by the binding of Sp1 or Sp1-like protein(s) 
in both erythroid and epithelial cell lineages. ABO 
promoter mutation, -35 to -18 del, was found in a B3 
variant individual, relating to mixed-field weak A/B 
antigen expression on RBCs. This mutation was lo-
cated on the SP1 binding site and thus influenced the 
promoter activity of the ABO genes[14].

Transcription from the ABO proximal promoter is 
in part controlled by silencer elements just upstream 
of the promoter, with negative elements for ABO gene 
transcription suggested to be in the region between -275 
and -118[1, 10]. Kominato and colleagues conducted 
a transient transfection experiment in KATOIII cells 
with a luciferase reporter plasmid carrying a mutated 
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N box at -196 to -191, demonstrating that the N box 
is a negative regulatory element. The N box binds 
with a nuclear factor, RACP. Repression of transcrip-
tion from the ABO proximal promoter is partially 
dependent on the N box.Down regulation of RACP 
may relieve the repression, thereby leading to the ex-
pression of ABO genes during the maturation of cells 
in the epithelial lineage as well as the erythroid line-
age. As early as 1997, Japanese scholars proved that 
the transcription of human ABO genes was dependent 
upon the binding of transcription factor CBF/NF-Y 
(CCAAT-binding factor) to a minisatellite sequence. 
The reported minisatellite sequence was in the 43-
bp unit, located 3.8 kb upstream of exon 1[8, 15]. The 
number of repeats in the upstream CBF/NF-Y-binding 
enhancer region, which contained four 43-bp repeats 
in A2/B/O1/O1v but only one 43-bp unit in A1/O2al-
leles, determined the transcription rate. The fourfold 
unit had approximately 140 times more activity than 
the single segment [16-17]. Some weak blood group B 
phenotypes may be caused by variations in the CBF/
NF-Y enhancer region of the ABO genes[18].

T H E  R E G U L A T O R Y  F U N C T I O N  O F 
3'-DOWNSTREAM REGION AND INTRON 1 
IN THE ABO GENES

Gene expression is driven by promoters, enhancers, 
transacting factors, and other cis-regulatory elements 
located on the core promoter, the region proximal to 
the core promoter, and the more distant sequences of 
the gene. Studies on the regulation of human ABO 
gene transcription have focused mainly on the 5' 
region, including the core promoter and the region 
proximal to it. Sano and colleagues, using luciferase 
reporter assays,examined the involvement of the 3' 
region in the transcriptional regulation of ABO genes. 
They found that the 3' flanking region of human ABO 
histo-blood group genes was involved in negative reg-
ulation of gene expression[19]. Further study indicated 
that the proximal downstream region of ABO genes 
functioned as a negative regulator in a manner that 
was independent of orientation, promoter, or position, 
while the distal downstream sequence repressed tran-
scription in a manner that was dependent on position. 
The sequence of the 3' region of ABO is characterized 
by a high degree of repetition[16]. However, transfec-
tion experiments in KATOIII and K562 cells showed 
that regions other than the highly repetitive sequences 
in the proximal 3' region were involved in the repres-
sion of ABO gene transcription. Several years later, 
Sano and colleagues identified another downstream 
regulatory element in the 3' flanking region of human 
ABO genes[20]. This was a positive regulatory element, 

designated the +22.6-kb site, which was shown to 
enhance ABO promoter activity in an epithelial cell-
specific manner. Expressions of ABO and B-antigen 
were found reduced in gastric cancer KATOIII cells 
by biallelic deletion of the +22.6-kb site. EMSA and 
ChIP assay demonstrated that the site bound to an epi-
thelial cell-specific transcription factor, Elf5. Mutation 
of the Ets binding motifs to abrogate binding of this 
factor reduced the regulatory activity of the +22.6-
kb site. Furthermore, ELF5 knockdown was found to 
cause reduced endogenous B-antigen expression in 
KATOIII cells. Thus, Elf5 appeared to be involved in 
the enhancer  potential of the +22.6-kb site. 

   As genome wide approaches for the discoveries of 
enhancers have become available, regulatory elements 
are often characterized by the presence of DNase I-
hypersensitive sites (DHSs), which can mark positions 
where transcription factors bind to DNA[21-22]. On 
the basis of DHSs in genomic DNA, a novel positive 
regulatory element in intron 1 of ABO was identi-
fied, named the +5.8-kb site[23]. The element appeared 
to enhance the activity of the ABO promoter in an 
erythroid cell-specific manner. This regulatory activ-
ity was shown to depend on the binding of transcrip-
tion factors GATA-1/2 and RUNX1[24-25]. Because 
deletion and disruption of the GATA and RUNX sites 
abrogated the erythroid cell-specific enhancer activity 
of the +5.8-kb site, it was suggested that these muta-
tions might downregulate transcription from B and A 
alleles, leading to a reduction in B- and A-antigen ex-
pression in cells of erythroid lineage, but not in mucus 
secreting cells, resulting in Bm and Am, respectively. 
Sano and his colleagues detected the genomic DNA 
from 382 Japanese individuals with Bm or ABm. 5.8-
kb deletion was found in 380 individuals, and disrup-
tion of the GATA motif in intron 1 was found in one 
individual, and a 3.0-kb deletion was demonstrated in 
the remaining individuals[26]. Similar to those of the 
Bm phenotype, mutations were also found in positive 
regulatory element in intron 1. A 23-bp deletion, in-
cluding a RUNX1 site in the +5.8-kb site of genomic 
DNA, obtained from individuals with Am

[27]. Mutations 
in the erythroid cell-specific regulatory element in in-
tron 1 can also result in weak phenotypes, beside Am/
Bm phenotypes. Chinese scholars found a single point 
mutation of RUNX1 motif (+5904 C>T) in the +5.8 
kb site, which may lead to Bel or Ael phenotypes [28]. 
Japanese scholars found two single point-mutations in 
the +5.8-kb site on the A-allele in A3 individuals [29].

OTHER MECHANISMS OF ABO GENE EX-
PRESSION REGULATION 

ABO genes contain a typical CpG island[9]. CpG 
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islands are almost always maintained in unmethyl-
ated states, unlike the CpG sites in the remainder of 
the genome. However, methylation of CpG islands 
can occur on an inactive X chromosome, in promot-
ers of imprinted genes, along with oncogenesis, and 
during aging. In all these cases, methylation of CpG 
islands spanning the promoter regions is strongly as-
sociated with transcriptional silencing. Expression of 
ABO genes in epithelial and erythroid cells lines was 
shown to be dependent on the methylation status of 
the proximal constitutive promoter, encoding most 
of the ABO transcripts. An inverse relationship was 
found between promoter hypermethylation and ABO 
gene expression[9]. Treatment of cells with the dem-
ethylating agent, 5-aza-2'-deoxycytidine, can result 
in demethylation of the ABO promoter region and re-
store transcriptional activity. Kominato and colleagues 
examined the methylation status of the upstream 
region in ABO genes by bisulfite genomic sequenc-
ing. They found that in cells expressing ABO genes, 
DNA hypermethylation was observed in the repetitive 
elements region, however the ABO CpG island was 
hypomethylated. The distal promoter region appeared 
to be located 3' adjacent to the methylated region of 
the repetitive elements. In the non-expressing cells, 
hypermethylation extended from the repetitive ele-
ments region through the distal promoter region to the 
proximal promoter region [10]. Changes in ABH antigen 
expression have been documented in tumorigenesis. 
Reduction or complete deletion of A/B antigen ex-
pression in carcinomas and myeloid malignancies has 
been reported [10, 30-31], and the loss of ABH antigens 
has been correlated with tumor progression of vari-
ous carcinomas[32-35]. Neoplastic cells simultaneously 
harbor widespread genomic hypomethylation and 
regional areas of hypermethylation[36]. Many stud-
ies have demonstrated that a loss of ABO expression 
in carcinomas and myeloid malignancies is strongly 
associated with DNA methylation of the ABO pro-
moter [37-39].

Epigenetic regulation is an important component 
of gene expression regulation. Histone acetylation, as 
with methylation, is a main component of the epige-
netic mechanism[40]. Kominato and his research group 
found that ABO transcription seemed to be regulated 
by histone modifications[41], firstly by noticing that 
sodium butyrate, one of the histone deacetylase in-
hibitors (HDACIs) promoted the differentiation of 
erythroid-lineage cells [42], resulting in the speculation 
that HDACIs might suppress ABO expression, leading 
to a reduction in ABO antigens. Subsequently, they 
examined the effects of HDACIs on K562 cells and 
KATOIII cells and observed a subsequent reduction of 

ABO transcripts in both cell types, finding that histone 
deacetylase inhibitors suppress ABO gene expression. 

Endogenous antisense transcription occurs in mam-
mals. Natural antisense transcripts can regulate key 
gene expression by mechanisms including translation-
al regulation, genomic imprinting, RNA interference, 
alternative splicing, X inactivation, RNA editing, gene 
silencing, and methylation [43]. Antisense RNAs also 
existinthe human ABO genes, designated as ABOAS, 
of which the transcript is approximately 2.0 kb in 
length and intronless. The expression of ABOAS ap-
pears to be correlated with ABO expression in various 
cultured cells and normal tissues. Repression of the 
ABO exon 1 promoter, however, results in an increase 
of ABOAS transcript in the cells expressing the ABO 
genes. The ABO and ABOAS transcript pair are re-
garded as a divergent structure, whose overlapping 
region involves the ABO gene's 5'-UTR, exon 1, and 
intron 1. Experiments have shown that the addition of 
mithramycin A, which is a well-known antibiotic that 
binds to GC-rich regions in chromatin and interferes 
with the transcription of genes that bear GC-rich mo-
tifs in their promoters by selectively displacing tran-
scriptional activators to KATOIII cells[44], results in 
the reduction of transcription from ABO exon 1, while 
at the same time increasing the ABOAS. So ABOAS 
transcribed from the opposite strand of the ABO genes 
might be involved in the regulation of ABO gene ex-
pression.

Glycosyltransferase A (GTA) and glycosyltrans-
ferase B (GTB) convert H antigen to A and B antigen 
using a UDPGalNAc or UDP-galactose donor. GTA 
and GTB are transmembrane proteins, both of which 
contain a short cytoplasmic domain, a transmembrane 
domain, a stem region and a catalytic domain [45]. The 
crystal structure is an important influence factor in 
GTA's and GTB's catalytic ability. Some mutations 
in the ABO genes cause the gene products' 3-D struc-
ture to become altered. Some weak ABO subgroups 
result from changes of GTA/GTB structure. Recent 
research concerning ABO blood antigen expression 
focuses on this phenomenon. Cai et al. [46]identified a 
mutation c.538C>T (p. R180C) of B allele in a blood 
donor and his father who had the ABw phenotype. In 
silico analyses found that the residue Arg180 on the 
internal flexible loop, next to the entry of the binding 
pocket may have its long side chain salt-bridged with 
the highly flexible C-terminal carboxyl, contribut-
ing to the catalysis of H to B antigen conversion. So 
the mutation p.R180C does not affect expression of 
glycosyltransferase B, but instead impairs H to B an-
tigen conversion. A similar study conducted by Lee 
et al[47] found a novel A subgroup allele (c.538C>T 
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p.Arg180Cys), showing a weak A phenotype by af-
fecting the structure of the glycosyltransferase A 
(GTA). Given that the internal loop region (177-195) 
was flexible in the open conformation of wild-type 
GTA, the side chain of Arg180 forming hydrogen 
bonds with other residues was presumed to stabilize 
the helical structure in the closed form of GTA. How-
ever, no hydrogen bonds were observed at residue 180 
in the p.Arg180Cys and p.Arg180Pro mutants. Haobo 
Huang and his coworkers identified ten novel weak 
ABO subgroup alleles. Among them, the GTA mutant 
p.L339P may lead to a weak A phenotype, by chang-
ing the local conformation of GTA and reducing its 
stability [48]. 

XiaohongCai found a missense mutation c.28G>A 
(p.G10R), which occurred at the last nucleotide of 
ABO gene Exon 1. This mutation was relatively com-
mon in B3 or AB3 individuals in the Shanghai area[14]. 
A further in vitro expression study revealed that GTB 
mutant p.G10R had a normal GTB transfer capac-
ity and was able to facilitate B antigen formation on 
the cell surface. This c.28G>Amutation decreased the 
ABO gene's mRNA level by affecting the splicing of 
the ABO gene's RNA[49], resulting in an altered B-
antigen expression.

CONCLUSION AND FUTURE PERSPECTIVE
ABO blood group antigens are carbohydrate anti-

gens, defined by terminal sugars on glycolipids and 
glycoproteins. H antigen is the precursor of A and 
B antigens, which are determined by FUT1 (H) and 
FUT2 (Se) genes[50]. So, the ultimate expression of A 
and B antigens on the red cell surface is dependent 
on not only ABO genes but also other related genes, 
for example FUT1 and FUT2 genes. Information on 
how the genes encode the transcriptional regulation 
of glycosyltransferases involved in the synthesis of 
ABO blood group antigens is fragmentary and super-
ficial, and future studies in this field will most likely 
focus on regulatory mechanisms which ensure the co-
operative expression of these genes. In addition, the 
expression of ABO antigens is influenced by other 
factors. For example, antigen density on the eryth-
rocyte surface is probably dependent on the amount 
of enzymes available at the biosynthetic site. Apart 
from any influence due to subcellular localization, this 
amount depends on the transcription of the gene and 
also on the degradation of the ABO-mRNA, as well 
as the active enzyme. Although some information is 
available, neither process is fully understood.

ABO antigens are widely expressed, not only in red 
blood cells but also in body fluids and tissues. In the 
last few years, many investigators have studied the 

association between the ABO blood group and the risk 
of various diseases, such as infectious diseases, arte-
rial and venous thromboembolism and certain kinds 
of cancer[33, 50-52]. The significance of A/B transferases 
and the biological functions of A/B antigens have not 
until now been clearly demonstrated, but it would be 
expected that loss of these functional proteins in pa-
tients would have some deleterious consequences. In 
addition to study on how ABO genes are controlled, 
further functional investigations are recommended to 
clarify the exact role of ABO antigens in physiologi-
cal and pathological processes.
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