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ABSTRACT  

The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: 
surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, 
signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical 
role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular 
signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the 
microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME 
influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the 
tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying 
new targets for immunotherapies that promote cancer elimination. 
Keywords: tumor immune microenvironment, immune checkpoints, tumor metastasis, cancer immunotherapy

INTRODUCTION

An established tumor is a complex tissue, com-
prising not only of tumor cells but also stromal 
cells, vasculature, extracellular matrices (ECM) and 
immune cells [1], which can either promote or hin-
der tumor growth, progression and metastasis. The 
cross-talk between immune cells and tumor cells has 
hampered progress in understanding the mechanisms 
of immunosuppression by which tumor cells circum-
vent immune responses. Immunoescape is one of the 
cancer hallmarks that have been proposed in the last 
decade, which provide a solid foundation for under-
standing the biology of cancer[2]. Inflammation in the 
development of cancers has been implicated since the 
seminal observation made by Virchow in as early as 
1863, in which chronic inflammation was shown to 
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create a microenvironment conducive to tumor gen-
esis[3]. This microenvironment is named the tumor 
immune microenvironment (TIME), and has recently 
raised much interest. The communication between 
tumor cells and the TIME is a dynamic process. 
When the anti-tumor immune response is strong, 
the cancer stays under control. However, multiple 
elements of suppression play important roles in the 
TIME, including immune cells such as T regulatory 
cells, myeloid suppressive cells, tumor-associated 
macrophages, and mast cells, and molecules such as 
checkpoints that control T-cell differentiation (for 
example, CTLA-4) and effector functions (such as 
PD-1)[4]. A pharmacological blockade of these in-
hibitory elements can tip the balance toward anti-
cancer effector T cells[5]. Thus, a better understand-
ing of TIME, including classes of TIME, immune 
cells and immune checkpoints, relationships between 
tumor genotypes and TIME, as well as the function 
of TIME in tumor metastasis may benefit the effi-
ciency of cancer immunotherapy.
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CLASSIFICATION OF THE TIME  

Checkpoint blockade therapy has been proven to be 
active in many cancer types, but emerging evidence 
shows it limits the therapeutic benefit to a subset of 
patients in each cancer entity[6]. It is necessary for us to 
classify the TIME to make a better understanding about 
why some patients show no response to checkpoint 
blockade therapy. The TIME can be characterized into 
three classes.

Infiltrated-excluded (I-E) TIME is the TIME popu-
lated with immune cells, but relatively void of cytotoxic 
lymphocytes (CTLs) in the tumor core[7]. I-E TIME is 
associated with various epithelial cancers, in which 
tumor-associated macrophages (TAMs) along the 
tumor margin are able to prevent CTLs from entering 
the tumor core[8]. I-E TIME contains CTLs with low 
expression of the activation-marker GZMB (GRZB) 
and IFNG and poor infiltration of CTLs into the tumor 
core [7]. The lack of activation-marker expression and 
exclusion from the tumor core shows immunological 
ignorance, in which state adaptive immunity cannot 
recognize or respond to a pathogen or malignancy[7]. I-E 
TIME lacks not only T cells but also the up-regulation 
of immune inhibitory mechanisms[9]. Therefore, it is 
not surprising that checkpoint blockade is not effective 
against this subgroup of patients [10].

Infiltrated-inflamed (I-I) TIME is characterized by 
a high infiltration of CTLs expressing PD-1 and leu-
kocytes and tumor cells expressing the immune-damp-
ening PD-1 ligand (PD-L1)[8]. Immune escape mecha-
nisms that allow the co-existence of an anti-tumor 
immune response and the tumor itself in I-I TIME have 
been reported in several papers [9-11]. CTLs in I-I TIME 
are related to the up-regulation of immune inhibitory 
mechanisms which can eliminate immunogenic tumor 
cells and leave only non-immunogenic tumor cells. 
This process displays a potent form of immune escape. 
Immune suppression in I-I TIME is being harnessed to 
activate the endogenous T-cell response to the block-
ing of immune inhibitory mechanisms [12].

A subclass of I-I TIME, termed TLS-TIME, con-
tains tertiary lymphoid structures (TLSs), including and 
activated conventional T cells, regulatory T cells, B 
cells and dendritic cells (DCs)[13]. TLSs also act as sites 
of lymphoid recruitment and immune activation in the 
settings of enhanced inflammation [13]. TLSs allow T 
cells to differentiate into effector cells upon contacting 
with mature DCs and B cells [14]. Thus, TLS represents 
sites for anti-tumor responses, which confer long-term 
protection against metastasis and correlate with a good 
prognosis for the patients. In conclusion, the classifica-
tions of the TIME can improve the understanding of 

how the different kinds of tumor immune microenvi-
ronment affect the anti-tumor responses or even the 
immune escape responses.

IMMUNE CELLS OF THE TIME

Tumors are organized tissues with numerous recip-
rocal local and systemic connections with immune cells 
including T lymphocytes, B lymphocytes, as well as 
myeloid cells including macrophages, myeloid-derived 
suppressor cells, DCs, and mast cells [15]. These com-
prise the tumor immune microenvironment (Fig. 1).

Many tumors express antigens that can be recognized 

Fig. 1  Different roles of immune cells in the TIME. 
Th17 cells are able to eliminate cancer cells by the recruitment of 
CD8+ effector T cells, and can also stimulate angiogenesis by the 
production of IL-17. Tregs can inactivate T cell-mediated tumor 
immunity by the secretion of IL-10. Tumor-associated mac-
rophages (TAMs) can facilitate the tumor-promoting inflam-
mation by the secretion of a large amount of cytokines. Myeloid 
derived suppressor cells (MDSCs) can decrease the activity of 
antigen-presenting cells (APCs), natural killer (NK) and T cells, 
and also induce angiogenesis in the hypoxic microenvironment. 
DCs participate as APCs that can promote adaptive immunity. 
However, DCs can favor tumor progression with mediating tol-
erance in certain circumstances. Similarly, mast cells, another 
type of APCs, have also been identified to modulate anti-tumor 
immunity, while can generate a series of pro-angiogenic factors 
to promote tumor progression. (Courtesy of Dr. Song Nan, et al.) 
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by T lymphocytes, suggesting that T cell-mediated 
immunity may be harnessed for the immunotherapy of 
cancers [16]. Within the TIME, many T cells have been 
observed, especially at the invasive tumor margin and in 
draining lymphoid organs. Among these, CD8+ mem-
ory T cells and CD4+ T helper 1(Th1) cells function 
as the major anti-tumor immune effector cells, which 
secret many cytokines that can prevent and suppress the 
development of cancers [17]. CD8+ effector T cells can 
recognize endogenous peptides displayed on the surface 
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of tumor cells within the groove of HLA class Ⅰ mol-
ecules. After CD8+ T cells recognize tumor specific 
peptides, they induce the killing of target tumor cells, or 
promote tumor destruction via the secretion of effec-
tor cytokines such as interferon-γ (IFN-γ) and TNF[18]. 
After activation, naïve CD4+ T cells will differentiate 
into various subsets of T helper cells, including Th1, 
Th2, and Th17 cells [19]. Th1 cells produce IFN-γ and 
function as immunity against intracellular pathogens. 
Th2 cells are able to assist B cells for the production of 
antibodies. Th17 cell can either suppress tumor cells 
by promoting the activation of tumor-specific CD8+ T 
cells and recruiting of DCs into TIME or exhibit pro-
tumor functions of certain cytokines [20]. Regulatory T 
cells (Tregs) inhibit the expression of co-stimulatory 
molecules on the surface of DCs, thus inactivate T 
cells [21]. Tregs also suppresses Th17 [22], CD8+ T cells [23] 
and B cells activity [24] in different ways. B cells in the 
tumor immune microenvironment can promote disease 
progression by secreting cytokines.

Studies suggest that among myeloid lineage cells, 
myeloid derived suppressive cells (MDSCs), mast 
cells, and most TAMs promote tumor development 
in the TIME[25]. Human MDSCs can be divided into 
three subsets, M-MDSCs, PMN-MDSCs and Lin-
HLA-DR-CD33+ MDSCs [26]. PMN-MDSCs suppress 
immune responses by producing TGF-β or inducing 
nitration of T-cell receptors (TCR), which makes T 
cells unresponsive to antigen stimulation. M-MDSCs 
can differentiate into TAMs, which promote T cell ap-
optosis and lead to immune suppression [27]. MDSCs 
produce large numbers of MMPs, which has a profound 
impact on tumor progression and metastasis through 
modulation of tumor angiogenesis and tumor cell inva-
sion [28].

Macrophages differentiate into two major subsets, 
including the pro-inflammatory M1-type and anti-
inflammatory M2-type. M1-type macrophages are ac-
tivated by IFN-γ and lipopolysaccharide and are char-
acterized by their high expression of IL-12 and low 
expression of IL-10. This cytokine profile promotes 
the development of a type 1 T cell response which fa-
cilitates anti-tumor immunity. The TIME can polar-
ize macrophages towards an M2-type, giving rise to 
TAMs[29]. M2-type macrophages are activated by IL-
4, IL-13, IL-10 and glucocorticoid, which can produce 
high levels of IL-10 and low levels of IL-12 and pro-
mote tumor progression[30,31].

The major functions of DCs are to process and pre-
sent antigen for the CD4+ and CD8+ T cells. DCs in the 
TIME act as effective antigen-presenting cells (APCs) 
inducing specific anti-tumor immune responses [32]. 

However, DCs often have impaired functions even if 
they recognize tumor antigen, because DCs may re-
main immature or may gain the expression of various 
immunosuppressive molecules. Multiple conditions 
and factors within the TIME can cause DC abnor-
malities [32]. The number of DCs often decreases due to 
tumor-induced immunosuppression [33]. In recent years, 
DCs presenting tumor-specific antigens are being de-
veloped as vaccines to induce immune responses to re-
gress tumors and prevent relapse.

Mast cells (MCs) infiltrating in the TIME have been 
found related to tumor development, meaning that MC 
has become a novel prognostic marker. Mast cells can 
induce the release of pro-angiogenic factors such as 
Ang-1 and VEGF-A [34]. Mast cells are also APCs, 
interact with both T cells and B cells, and modulate 
immune responses. Mast cells can recruit eosinophils, 
neutrophils, and activate anti-tumor adaptive T and B 
cell responses. However, the recruitment of Tregs into 
the tumor microenvironment is mediated by mast cell-
derived adenosine [33]. Thus, mast cells play a role in 
either promoting angiogenesis, or regulating the anti-
tumor immunity. Investigating the role of immune cells 
in the TIME may provide a gateway to the development 
of innovative and effective strategies for cancer immu-
notherapy [35]. 

IMMUNE CHECKPOINTS OF THE TIME

Immune checkpoints are important immune regula-
tors in maintaining immune homeostasis and preventing 
autoimmunity [36]. Under normal circumstances, im-
mune checkpoints allow the immune system to respond 
to infection and malignancy while protecting tissues 
from any harm that may derive from the condition. 
However, some of these immune-checkpoint proteins 
expressed on malignant cells may deregulate antitumor 
immunity and favor tumor growth [37]. So far, many im-
mune checkpoint molecules have been studied, such as 
PD-1 [38], PD-L1/2, cytotoxic T lymphocyte antigen-4 
(CTLA-4) [39], lymphocyte-activation gene 3(LAG-
3)[40], T-cell immunoglobulin and mucin-domain-
containing molecule-3 (TIM-3), B and T lymphocyte 
attenuator (BTLA) [41] and so on (Fig. 2).

Present immune checkpoint molecules research is 
mainly focusing on CTLA-4, PD-1 and its ligands 
PD-L1 (B7H1) and PD-L2 (B7-DC). CTLA-4 is 
thought to play a role in regulating the magnitude of 
early T cell activation, while PD-1 is expressed upon 
T cell activation and regulates effector T cell activ-
ity[41], and restricts CTLA-4 expression only to T cells; 
while PD-1 is found on T cells, B cells and NK cells. 
CTLA-4 is a cell-surface receptor expressed by acti-
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vated T cells with homology to the T cell costimulatory 
molecule CD28. Although CD28 and CTLA-4 are both 
ligands for B7-1 (CD80) and B7-2 (CD86), they serve 
opposing roles in regulating T cell activation [4]. CD28 
provides costimulatory signals required for T cell ac-
tivation while CTLA-4 modulates T cell responses by 
raising the activation threshold for T cell priming [42]. 

In response to immune attack, cancer cells over-
express PD-L1. They bind to the PD-1 receptor on 
T cells, inhibiting the activation of T-cells, thus sup-
pressing T-cell attack and inducing tumor immune 
escape [18]. Tumor cells form a suitable tumor immune 
microenvironment and continue to proliferate. The 
PD-1/PD-L1 pathway regulates immune suppression 
by multiple mechanisms, specifically the performance 
of: ① CD28, which sustains T cell survival by a driv-
ing expression of the anti-apoptotic gene Bcl-xL. 
PD-1 prevents Bcl-xL expression by inhibiting PI3K 
activation (which is essential for upregulation of Bcl-
xL). PD-1 induces apoptosis of activated T cells [43]. 
② PD-L1 is able to promote the generation of induced 
Tregs by down-regulating the mTOR, AKT, S6 and 
the phosphorylation of ERK2 and increasing PTEN, 
thus restraining the activity of the effector T-cell [44]. 
③ PD-1 inhibits the proliferation of T cells by pre-
venting the phosphorylation of PKC-theta, which is 
essential for IL-2 production, and arresting T cells in 
the G1 phase [45]. ④ The exhaustion of tumor infiltrat-
ing lymphocytes (TILs) in the TIME is closely related 
to the PD-L1 expression of tumor cells or myeloid 
cells derived from tumor. ⑤ PD-1/PD-L1 blocks the 
downstream signaling events triggered by Ag/MHC 
engagement of the TCR and co-stimulation through 
CD28, resulting in impaired T cell activation and IL-2 
production [18].

There are also some newly emerging immune check-
points, such as LAG-3, BTLA, and TIM-3.

LAG-3 is a single transmembrane protein with the 
three-Ig extracellular domains, which expresses on ac-
tivated T cells, regulatory T cells, NK cells, DCs, and B 
cells [40]. LAG-3 acts to inhibit the immune response by 
inhibiting effector T cell killing, and through Treg cell-
mediated immune suppression.

BTLA is an immunoglobulin domain-containing 
glycoprotein expressed on T cells, resting B cells, mac-
rophages, and DCs [46]. BTLA acts as an inhibitory re-
ceptor on T cells, and anti-BTLA treatment can cause 
T cell proliferation [46]. TIM-3 is upregulated in various 
types of cancer, which can inhibit Th1 cell responses [47].

TUMOR GENOTYPES AND THE TIME

To have a better understanding of the tumor devel-
oping mechanisms, we have to figure out how tumor on-

cogenes and mutation landscapes determine the compo-
sition of the TIME. There are several examples showing 
relationships between tumor genotypes and the TIME.

Deficient DNA mismatch repair (MMR) results in 
a strong mutate phenotype known as microsatellite 
instability (MSI), which is characterized by length al-
terations within simple repeated sequences [48]. In MSI 
cancers, MMR deficiency generates many aberrant 
proteins truncated by frameshift mutations. Inactivating 
mutations in the HLA and β2-microglobulin genes are 
often observed in MSI cancers, by which cancer cells 
may escape immune recognition by CTLs. Analyses 
of tumor genotypes have revealed that most tumors 
within the Th1/CTL immune microenvironment have 
defects in mismatch repair, as evidenced by MSI [48]. To 
counterbalance this active Th1/CTL immune micro-
environment, MSI cancers selectively showed highly 
upregulated expression of multiple immune check-
point proteins, such as PD-1, PD-L1, CTLA-4, and 
LAG-3[37]. These findings link tumor genotype with 
the immune microenvironment and explain why MSI 
tumors are not naturally eradicated, despite the active 
Th1/CTL microenvironment.  

BRAFV600E is a mutated and oncogenic form of the 
MAPK family member BRAF in melanoma[49]. In 
BRAF mutant melanoma patients, MAPK pathway 
inhibitors increase the number of TAMs and TNF-α 
expression [50]. BRAFV600E has also been shown to drive 
expression of IL-6, IL-10 and VEGF, cytokines that 
promote a tolerogenic monocyte-derived DC pheno-
type in vitro, a process that affects anti-tumor T cell 

Fig. 2  Stimulatory and inhibitory immune check-
points. The blockade of inhibitory immune checkpoints can 
regulate T-cell activation and prevent immune escape of cancer 
cells within the tumor immune microenvironment. The activa-
tion of stimulatory immune checkpoints can augment the effect 
of immune checkpoint inhibitors in cancer therapeutics. Red, in-
hibitory immune checkpoints; blue, stimulatory immune check-
points.(Courtesy of Dr. Feng Xu, et al. ) 
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function in vivo[51].
The tumor suppressor p53 is the most mutated gene 

in human cancer [52]. Compelling evidence suggests that 
p53 mutation leads to the gain-of-function or activa-
tion of non-autonomous pathways, which either di-
rectly or indirectly promote tumorigenesis [53]. P53 dys-
function in various cellular compartments of the tumor 
immune microenvironment leads to immune suppres-
sion and immune evasion [52].

Multiple reports have showed that the oncogene 
KRASG12D can drive pancreatic ductal adenocarcinoma 
cells (PDAC) to secrete high levels of the growth fac-
tor GM-CSF, which is associated with an increase 
in tumor-associated Gr1+CD11b+ myeloid cells with 
reported immunosuppressive function [54]. These data 
show that oncogenes promote the establishment of an 
immunosuppressive TIME, which is likely to sup-
port malignant development. Therefore the systematic 
analysis of the correlation between cancer genome and 
the TIME will generate new perspectives on the com-
prehension of the carcinogenesis and cancer treatment.

CHARACTERS OF THE TIME DURING 
TUMOR METASTASIS

Tumor metastasis is responsible for more than 90% 
of cancer mortality, yet still remains the least under-
stood stage of tumor development. It has been proven 
that primary tumors can secrete cytokines, growth fac-
tors and proteases that mediate the establishment of the 
specific TIME in distant organs that are sites of future 
metastasis, in terms of the formation of the "pre-meta-
static niche"[55].

Epithelial-to-mesenchymal transition (EMT) of tu-
mor cells is associated with distant metastasis. During 
EMT, the tumor cells undergo morphological changes 
that confer enhanced motility and reduced intercellular 
adhesion. It is reported that tumor recruitment of MDSC 
promotes EMT [56]. Mast cells in the breast tumor im-
mune microenvironment can secrete tryptase, which 
results in enhanced rates of metastasis to the lymph 
nodes and high-grade breast tumors [57]. In the poly-
some middle T antigen (PyMT) model of breast cancer, 
studies showed that macrophages exposed to IL-4 are 
able to upregulate the expression of cysteine protease 
cathepsin B and lead to increased lung metastases [58]. In 
the colorectal cancer model, immature CCR1+ myeloid 
cells recruited from bone marrow migrate toward the 
CCR1 ligand (CCL9) expressed in the tumor epithe-
lium and also promote tumor invasion [59]. Immunosup-
pressive CD4+ T cells recruited to the TIME can secrete 
IL-4 and IL-13 to convert tumor suppressive M1 mac-
rophages to a tumor-promoting M2 phenotype, which 

have been shown to support breast cancer metastasis to 
the lung [60]. In particular, breast cancer cells are able to 
recruit tumor-associated macrophages through the pro-
duction of CSF1 and CXCL12. Lewis lung carcinoma 
(LLC) cells can activate macrophages by the secretion 
of TNF-α and IL-6, which induce invasion and me-
tastasis by signaling to toll-like receptor 2 (TLR2) and 
toll-like receptor 6 (TLR6) [61]. These data emphasize 
that the immunosuppressive mediators in the TIME 
may encourage the tumor metastasis. 

THE TIME AS A TARGET FOR IMMU-
NOTHERAPY

Immunotherapy represents the third important his-
torical wave in the systemic treatment of cancer after 
chemotherapy[62]. Its first clinical application was in the 
late 19th century when William B. Coley observed tu-
mor shrinkage (and in some cases disappearance) fol-
lowing the injection of bacterial products in and around 
tumors.

Immune checkpoint therapies that use blocking anti-
bodies for CTLA-4, and PD-1 have shown impressive 
efficacy in clinical trials. Cancer Immunotherapy was 
voted as 2013's Breakthrough of the Year by the journal 
Science[63]. In 2011, the US Foods and Drug Administra-
tion (FDA) approved anti-CTLA-4 antibodies (ipili-
mumab) for use of treating melanoma, which marked the 
beginning of a new era in cancer immunotherapy[64]. The 
FDA also approved sipuleucel-T (trade name Provenge®) 
for advanced prostate cancer [65]. Leukocyte migration 
are regulated by chemokines, which raises the idea 
that manipulating the TIME chemokine profile may 
recruit sufficient numbers of effector cells into tumor 
tissues for tumor destruction [66]. CXCL10 is a kind of 
chemokine that recruits T cells and dipeptidyl peptidase 
4 (DPP4) (an enzyme that inactivates CXCL10 in tumor 
tissues) [67]. DPP4 inhibitors can increase the number of 
tumor-infiltrating T cells and can also be used in com-
bination with other immunotherapies [68]. In contrast to 
chemokines, cytokines are a broad group of proteins 
that can modulate immune responses. The fusion 
protein generated by linking IFN-α to an anti-CD20 
antibody can induce tumor regression, since IFN-α 
plays important roles in anti-tumor responses[69]. 
In another study, the anti-EGFR-IFN-α fusion pro-
tein also showed potent anti-tumor activities, such as 
targeting DCs to increase antigen cross-presentation, 
leading to increased T-cell priming in the TIME [70]. 
The approach that holds the most clinical promise today 
is the generation of chimeric antigen receptors (CARs). 
CARs are fusion proteins which incorporate antigen-
recognition domains and T-cell activation domains [71]. 
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T cells can be changed to express CARs and transferred 
to patients. Two CART19 products, CTL019 (Kym-
riah®, Novartis) and KTE-19 (Yescarta®, Kite Pharma/
Gilead) have already been approved by the US FDA to 
treat refractory or relapsed paediatric and young-adult 
B-ALL or refractory or relapsed adult diffuse large-
B cell lymphoma, respectively[72]. The development 
of immunotherapy underscores the importance of un-
derstanding basic tumor immunology and the roles of 
the immunosuppressive TIME, and thus is shaping the 
direction of current cancer research and having a large 
influence on cancer therapy.

PERSPECTIVES

With the rapid development of science and technol-
ogy, large progress has been made in the tumor im-
mune microenvironment. Increasing evidence suggests 
that the disruption of TIME may serve as a novel and 
critical therapeutic paradigm to fight cancer [73]. Clinical 
trials of combination therapy that target both the tumor 
and TIME are being conducted in several types of ad-
vanced cancer [74,75].

To date, there are still challenges in this field: since 
the different subsets of TIME may lead to different 
clinical outcomes, further studies will need to be con-
ducted in order to find more functions and mechanisms 
in the subsets of TIME which can instruct the clinical 
therapy. Proper in vitro and in vivo models need to be 
constructed for analyzing the interactions between can-
cer cells and the immune microenvironment. It is still 
largely unknown how different immune cells cooper-
ate with each other within tumor tissues[76]. Thus, the 
molecular mechanisms that regulate cell-to-cell in-
teraction need to be uncovered. The composition of the 
immune cells in the TIME in primary tumors and me-
tastases is highly varied[77], therefore immune therapies 
that target different kinds of TIME are much required 
for better efficacy. 
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